Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
K. Ravikumar, ${ }^{\text {a }}$
G. Y. S. K. Swamy, ${ }^{\text {a }}$ *
S. Raghavan ${ }^{\text {b }}$ and

Ch. Naveenkumar ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {b }}$ Organic Division I, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail: swamy@ins.iictnet.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.051$
$w R$ factor $=0.130$
Data-to-parameter ratio $=19.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

$N-[(1 S, 2 S, 3 R)$-2-Bromo-3-(tert-butyldiphenyl-silyloxy)-1-phenyl-4-(phenylsulfonyl)butyl]-4-methylbenzenesulfonamide

In the title compound, $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{BrNO}_{5} \mathrm{~S}_{2} \mathrm{Si}$, the Si and S atoms have tetrahedrally geometry. In the crystal structure, the molecules form centrosymmetric dimers through rather long $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions.

Comment

Vicinal (Babine \& Bender, 1997) and 1,3-amino alcohols (Benedetti \& Norbedo, 2001) are structural motifs present in a variety of natural products and pharmaceutical agents. Interest in these structural units has led to the development of a variety of methods for their synthesis (Petasis \& Zavialov, 1998). We recently disclosed (Raghavan et al., 2004) an efficient, novel and general method for the preparation of amino alcohol derivatives, (2), from readily accessible β-hydroxy (silyloxy) γ, δ-unsaturated sulfilimines, (1), via intramolecular nucleophilic assistance, by the sulfilimine group. The crystal structure determination of the title compound, (I), was carried out in order to elucidate the relative stereochemistry at atoms C1, C2 and C3 (Fig. 1.)

(I)
The $\mathrm{S}-\mathrm{O}, \mathrm{S}-\mathrm{C}, \mathrm{S}-\mathrm{N}$ and $\mathrm{C}-\mathrm{Br}$ bond lengths are comparable with the reported mean literature values of 1.436 (1), 1.78 (2), 1.663 (19) and 1.97 (3) Å, respectively (Allen et al., 1987). The bond distances around Si are comparable with those in reported structures (Ravikumar et al., 2004; Lewinski, 1997; Tomlins et al., 1985).

Received 1 November 2004
Accepted 3 November 2004
Online 13 November 2004

Figure 1
A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Atoms S2 and Si have tetrahedral geometry (Table 1) and S1 has distorted tetrahedral geometry. The widening of the $\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$ angle to $119.1(2)^{\circ}$ and the resulting narrowing of the $\mathrm{C} 5-\mathrm{S} 1-\mathrm{C} 4$ angle to $102.1(1)^{\circ}$ from the ideal tetrahedral value is attributed to the Thorpe-Ingold effect (Bassindale, 1984). The torsion angle $\mathrm{C} 3-\mathrm{O} 3-\mathrm{Si}-\mathrm{C} 36$ [-113.1 (2) ${ }^{\circ}$] differs from an ideal trans conformation to a greater extent than observed in the majority of structures containing tert-butyldiphenylsilyloxy group (Lewinski, 1997). We have previously reported the structure of a very closely related compound, viz. N-[(1S,2S,3R)-2-bromo-3-(tert-butyl-diphenylsiloxy)-1-phenyl-4-(phenylsulfinyl)butyl]benzenesulfonamide (SFIL), where atom S1 carries just one O atom (Ravikumar et al., 2004). In the title compound, the molecules form centrosymmetric dimers via rather long $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The structure is further stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Table 2).

On comparing (I) with SFIL, the relative torsion angles about the bonds $\mathrm{S} 2-\mathrm{N} 1$ [63.3 (2) ${ }^{\circ}$ in (I) versus 78.6 (3) ${ }^{\circ}$ in SFIL], C4-C3 [162.9 (2) versus 168.1 (2) ${ }^{\circ}$] and N1-C1 [144.9 (2) versus 141.0 (2) ${ }^{\circ}$] are very similar, however, the torsion angle about $\mathrm{C} 1-\mathrm{C} 2$ [-39.1 (3) versus $\left.-168.5(2)^{\circ}\right]$ is significantly different. A least-squares fit for the atoms $\mathrm{C} 3 / \mathrm{C} 4 /$ S1/C5-C10 (r.m.s. deviation $=0.084 \AA$) of the two compounds shows significant similarities (Fig. 2), differing only in the orientation of the p-toluenesulfonyl group.

Experimental

To a solution of sulfoxide (Ravikumar et al., 2004) (0.1 mmol) in dichloromethane (0.4 ml) was added m-chloroperoxybenzoic acid $(0.12 \mathrm{mmol})$ and the mixture was stirred for 30 min . After completion, the reaction mixture was diluted with dichloromethane and washed successively with aqueous sodium bisulfite, aqueous sodium bicarbonate, water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under reduced pressure afforded the crude product, which
was purified by column chromatography using $20 \% \mathrm{EtOAc}$ /petroleum ether (v / v) as the eluent to afford the title compound. Suitable colourless crystals were obtained from aqueous methanol.

Crystal data

$\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{BrNO}_{5} \mathrm{~S}_{2} \mathrm{Si}$

$$
D_{x}=1.345 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=776.86$
Monoclinic, $P 2_{1} / n$
$a=13.9704$ (8) A
$b=19.5590$ (12) \AA
$c=14.1646$ (9) \AA
$\beta=96.9000(10)^{\circ}$
$V=3842.4$ (4) \AA^{3}
$Z=4$

$$
\begin{aligned}
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 4427 reflections
$\theta=2.4-22.8^{\circ}$
$\mu=1.25 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
Absorption correction: none
23909 measured reflections 8859 independent reflections
$0.24 \times 0.20 \times 0.14 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.130$
$S=1.02$
5593 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-17 \rightarrow 18$
$k=-25 \rightarrow 23$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.072 P)^{2}\right. \\
& \quad+0.603 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.62 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Br} 1-\mathrm{C} 2$	$1.960(3)$	$\mathrm{N} 1-\mathrm{S} 2$	$1.622(2)$
$\mathrm{C} 4-\mathrm{S} 1$	$1.773(3)$	$\mathrm{O} 1-\mathrm{S} 1$	$1.428(3)$
$\mathrm{C} 5-\mathrm{S} 1$	$1.764(3)$	$\mathrm{O} 2-\mathrm{S} 1$	$1.427(3)$
$\mathrm{C} 11-\mathrm{S} 2$	$1.759(3)$	$\mathrm{O} 3-\mathrm{Si}$	$1.6446(19)$
$\mathrm{C} 24-\mathrm{Si}$	$1.878(3)$	$\mathrm{O} 4-\mathrm{S} 2$	$1.4275(19)$
$\mathrm{C} 30-\mathrm{Si}$	$1.866(3)$	$\mathrm{O} 5-\mathrm{S} 2$	$1.4325(19)$
$\mathrm{C} 36-\mathrm{Si}$	$1.887(3)$		
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 4$	$107.12(15)$	$\mathrm{N} 1-\mathrm{S} 2-\mathrm{C} 11$	$108.25(12)$
$\mathrm{C} 5-\mathrm{S} 1-\mathrm{C} 4$	$102.12(13)$	$\mathrm{O} 3-\mathrm{Si}-\mathrm{C} 30$	$105.24(12)$
$\mathrm{O} 4-\mathrm{S} 2-\mathrm{N} 1$	$107.62(11)$	$\mathrm{O} 3-\mathrm{Si}-\mathrm{C} 24$	$109.46(11)$
$\mathrm{O} 4-\mathrm{S} 2-\mathrm{C} 11$	$107.95(12)$	$\mathrm{C} 30-\mathrm{Si}-\mathrm{C} 24$	$111.28(13)$

Table 2
Hydrogen-bonding geometry $\left(\mathrm{A}^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 4$	0.98	2.58	$3.027(5)$	108
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 4$	0.97	2.57	$3.493(3)$	160
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 2$	0.93	2.54	$2.904(2)$	104
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 4$	0.93	2.52	$2.896(2)$	105
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 5^{\mathrm{i}}$	0.86	2.40	$2.966(3)$	124

Symmetry code: (i) $1-x, 1-y, 1-z$.
The H atoms were positioned geometrically and were treated as riding on their parent C and N atoms, with aromatic $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA, \mathrm{~N}-\mathrm{H}$ distances of $0.86 \AA$, methine $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$, methylene $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA$ and methyl $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms. The methyl groups were allowed to rotate but not to tip.

Figure 2
Least-squares fit of (I) and SFIL based on the atoms C3/C4/S1/C5-C10

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

The authors thank Dr J. S. Yadav, Director, IICT, Hyderabad, for his kind encouragement.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Babine, R. F. \& Bender, S. L. (1997). Chem. Rev. 97, 1359-1472.
Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.
Benedetti, F. \& Norbedo, S. (2001). J. Chem. Soc. Chem. Commun. pp. 203204.

Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lewinski, K. (1997). Acta Cryst. C53, 753-755.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Petasis, N. A. \& Zavialov, I. A. (1998). J. Am. Chem. Soc. 120, 11798-11799.
Raghavan, S., Naveen Kumar, Ch., Tony, K. A., Ramakrishna Reddy, S. \& Ravikumar, K. (2004). Tetrahedron Lett. 45, 7231-7234.
Ravikumar, K., Swamy, G. Y. S. K., Raghavan, S. \& Naveen Kumar, Ch. (2004). Acta Cryst. E60, o1880-o1882.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tomlins, P. E., Lydon, J. E., Akrigg, D. \& Sheldrick, B. (1985). Acta Cryst. C41, 292-294.

